E. Conceptual Development Plan (CDP)

INTRODUCTION. The purpose of this chapter is to present the Conceptual Development Plan recommendations for Rogue Valley International-Medford Airport. This chapter builds upon the various factors and influences presented in the previous Alternatives chapter and form the basis for the Airport’s long-term development program. Environmental, instrument approach and engineering considerations related to the proposed development are also presented.

Following discussions with the Study Committee, Airport Staff, and the Federal Aviation Administration, components of the alternative analysis provided in the previous chapter have been selected for inclusion on the recommended Conceptual Development Plan for the Airport. The CDP has been utilized as the basis for the Environmental Review, the development of detailed Airport Plans, and the development of the Implementation Plan. The CDP has been divided into two phases with Phase I being the Initial phase of development and Phase II representing the Ultimate development of Rogue Valley International-Medford Airport.

Initial Conceptual Development Plan (Phase I)

The primary airside elements of the Initial CDP for Rogue Valley International-Medford Airport include the closure of Runway 9/27, the conversion of a portion of this runway into Taxiway “B”, the realignment of Taxiway “C”, and the construction of a parallel runway to ARC B-II standards. Land acquisition is also recommended for the Runway Protection Zone (RPZ) to Runway 14. The primary landside elements include infill development with aviation related uses on the west side of the airport and consideration of land acquisition and potential aviation related development on the eastside of the Airport. Additional development recommendations of the Initial CDP include a public access road around the south end of the runway complex with associated perimeter fence relocations, space reservations for a future fuel farm, future terminal related improvements and non-aviation related development.

Land acquisition recommendations include approximately 21.5 Acres for RPZ land north of the Airport and approximately 80 acres for future aviation related land uses on the east side of the Airport. It is also important to note that future east side development is constrained by the location of the proposed Highway 62 Bypass Alignment and by Upton Creek. Development on this side of the airport must be carefully planned given these existing constraints. The proposed development in Phase I is illustrated in the following figure entitled *INITIAL CONCEPTUAL DEVELOPMENT PLAN (PHASE I).*
Ultimate Conceptual Development Plan (Phase II)

Phase II of the CDP for Rogue Valley International-Medford Airport includes all proposed development in Phase I with a couple of modifications. The first change includes an Airport Reference Code (ARC) upgrade for Runway 14L/32R from B-II to C-II and an extension of the runway to an ultimate length of 6,865 feet. This ARC upgrade and extension will allow the runway to serve the majority of the private business jet fleet and also accommodate commercial jet aircraft in the event that the primary runway needs to be shut down for maintenance or for an emergency. In order to accommodate this runway length and keep both RPZs on airport property, the runway is shifted approximately 965 feet to the north and extended. Runway 14L/32R is also widened to 100 feet in Phase II. Also, in order to accommodate the C-II runway, a portion of Upton Creek must first be relocated or channelized.

One additional improvement not included in Phase I is the potential reservation of space for a relocated Airport Rescue and Firefighting (ARFF) station. The proposed development in Phase II is illustrated in the following figure entitled **ULTIMATE CONCEPTUAL DEVELOPMENT PLAN (PHASE II)**.
Figure E2 Ultimate Conceptual Development Plan (Phase II Parallel Runway)
Instrument Approach Considerations

As part of the Conceptual Development Plan screening for the Master Plan Update, the consultant was asked to examine opportunities and impediments for instrument approach enhancement at Rogue Valley International-Medford Airport. This assessment has been completed utilizing the approach clearance criteria in FAA Order 8260.3B, Terminal Instrument Procedures (TERPs) and FAA Part 77, Objects Affecting Navigable Airspace focusing on the final and missed approach courses to each runway end at MFR. This analysis has been conducted and has examined both Airport Data Sheets (ADS) and Digital Object Files (DOF) [for Part 77 considerations], and Parts 1 and 2 for the final approach course and missed approach to both runway end [for TERPs considerations] and have found no noteworthy obstructions for the development of a ¾ mile visibility approach to Runway 32. This same analysis suggests that theoretical approach enhancements to Runway 14 may be possible as well. These summary findings require confirmation through an Airport Airspace Analysis Survey. A Vertically Guided Approach Survey and Analysis Specification is required to support instrument procedure development for each runway end (AC 150/5300-18B Chapter 2.7).

Engineering Considerations

Absent environmental considerations, which are discussed in a subsequent section of this chapter, there are no insurmountable engineering considerations regarding the Conceptual Development Plans for Rogue Valley International-Medford Airport. Pavement construction is straight-forward and would be consistent with previous projects and the same is true with anticipated vertical (building or structure) development included in the CDPs. It should be recognized that several significant engineering features will require satisfactory resolution within the context of these plans, such as the potential relocation or channeling of Upton Creek with the development of a full parallel taxiway system to proposed Runway 14L/32R, as well as for the ultimate potential development of an extended Runway 14L/32R to a design length of approximately 6,865 feet and C-II development standards. Another engineering consideration will present itself with the programmed construction of a new south access road to provide public access to the east side of the Airport as a result of the Highway 62 Bypass program. Two potential roadway locations are depicted on the CDPs and, regardless of routing; either roadway alignment crosses Lone Pine Creek and does not appear to present overwhelming engineering considerations. From a planning perspective, the order of magnitude presented by these engineering considerations is consistent with the scale and scope of this anticipated development program and would likely not cause program altering value engineering requirements.
Environmental Considerations

This section presents an analysis and screening of the Conceptual Development Plans in consideration of relevant environmental issues including aircraft noise. The potential impacts are generalized in a non-quantified fashion and the likely environmental processing required for various improvement projects is also identified. Alternatives for the future configuration of the Airport have been reviewed and summarized in previous chapters. The major improvements being considered include the following:

- Completion of the Taxiway “C” Loop System
- Rehabilitation of Various Airport Pavements
- Expansion of Aircraft Parking Areas and Hangar Areas on the West Side of the Airport
- Construction of a Snow Removal Equipment (SRE) Building
- Acquisition of Runway Protection Zone Land
- Acquisition of Land East of the Airport for Future Aeronautical Development
- Construction of a Parallel Runway to ARC B-II standards Initially and C-II standards Ultimately
- Fuel Farm Construction
- Upton Creek Relocation/Channelization
- Eastside Public Access Road Construction
- Airport Rescue and Firefighting (ARFF) Building Relocation

Noise Analysis

Noise is generally defined as unwanted sound and, as such, the determination of acceptable levels is subjective. The day-night sound level (DNL) methodology is used to determine both the noise levels resulting from existing conditions and the potential noise levels that could be expected to occur with a proposed project. The basic unit in the computation of DNL is the Sound Exposure Level (SEL). An SEL is computed by adding the “A” weighted decibel level \([dB(A)]\) level for each second of a noise event above a certain threshold (“A” weighted refers to the sound scale pertaining to the human ear). For example, a noise monitor located in a quiet residential area \([40 \ dB(A)]\) receives the sound impulses of an approaching aircraft and records the highest \(dB(A)\) reading for each second of the event as the aircraft approaches and departs the site. Each of these one-second readings is then added logarithmically to compute the SEL.
The computation of DNL involves the addition, weighting, and averaging of each SEL to achieve the DNL level in a particular location. The SEL of any single noise event occurring between the hours of 10:00 p.m. and 7:00 a.m. is automatically weighted by adding 10 dB(A) to the SEL to account for the assumed additional irritation perceived during that time period. All SELs are then averaged over a given time period (day, week, year) to achieve a level characteristic of the total noise environment. Very simply, a DNL level for a specified area over a given time is approximately equal to the average dB(A) level that has the same sound level as the intermittent noise events. Thus, a DNL 65 level describes an area as having a constant noise level of 65 dB(A), which is the approximate average of single noise events even though the area would experience noise events much higher than 65 dB(A) and periods of quiet.

The main advantage of DNL is that it provides a common measure for a variety of differing noise environments. The same DNL level can describe both an area with very few high level noise events and an area with many low level events. DNL is thus constructed because it has been found that the total noise energy in an area predicts community response.

DNL levels are usually depicted as grid cells or contours. Grid cells are squares of land of a specific size that are entirely characterized by a noise level. Contours are interpolations of noise levels based on the centroid of a grid cell and drawn to connect all points of similar level. Contours appear similar to topographical contours and form concentric “footprints” about a noise source. These footprints of DNL contours drawn about an airport are used to predict community response to the noise from aircraft using that airport.

Computer Modeling. DNL noise contours for Rogue Valley International-Medford Airport were generated using the Integrated Noise Model (INM) Version 7.0b, specifically developed by the Federal Aviation Administration (FAA) for modeling the noise environment at airports. The program is provided with standard aircraft noise and performance data, which can be tailored to the characteristics of individual airports. The INM program requires the input of the physical and operational characteristics of the airport. Physical characteristics include runway end coordinates, displaced thresholds, airport elevation, and temperature. Operational characteristics include aircraft mix, flight tracks, and runway utilization. Optional data that can be incorporated in the model includes approach and departure profiles, approach and departure procedures, and aircraft noise curves. Using the existing and forecast aircraft operations presented in Chapter B, three sets of noise contours have been generated, an existing, 2010 set and two future sets corresponding to future years of 2020 and 2030. Illustrations and descriptions of the potential impacts to the surrounding land uses for each set of noise contours follow.
2010 Noise Contours. The existing noise contours and the anticipated effect on the surrounding land uses are presented in the following figure entitled EXISTING NOISE CONTOURS W/GENERALIZED EXISTING LAND USE. The 65 DNL noise contour encompasses roughly 270 acres with the 65 DNL noise contour remaining primarily on airport property.

2020 Noise Contours. The future 2020 noise contours were developed to show the anticipated effects of the proposed parallel runway project included in the Conceptual Development Plan Phase I. As can be seen on the following figure entitled FUTURE (2020) NOISE CONTOURS W/GENERALIZED EXISTING LAND USE, 65 DNL contours is wider with the proposed parallel runway. The 65 DNL noise contour encompasses roughly 336 acres. The overall cumulative effect of the parallel runway is a positive change in noise exposure in that the more populated residential areas to the south of the Airport would be exposed to less aircraft noise.

2030 Noise Contours. The future 2030 noise contours were developed to show the anticipated effects of the proposed upgrade to ARC C-II of the parallel runway included in the Conceptual Development Plan Phase II. As can be seen on the following figure entitled FUTURE (2030) NOISE CONTOURS W/GENERALIZED EXISTING LAND USE, the 65 DNL contour is again wider than the existing contours with the upgraded parallel runway. The 65 DNL noise contour encompasses roughly 364 acres. The overall cumulative effect of the upgraded parallel runway is a positive change in noise exposure to the south compared to the existing contour, but an increase in noise exposure to the south compared to the 2020 contours.
GENERALIZED EXISTING LAND USE LEGEND

- School
- Urban Growth Boundary
- Airport
- Residential
- Commercial
- City Center
- Industrial
- Parks & Schools

NOISE CONTOUR LEGEND

- 65 DNL
- 70 DNL
- 75 DNL

Approximate Scale 1" = 4,000'

FIGURE A6 Generalized Existing Land Use Plan
Approximate Scale 1" = 4,000'

FIGURE E3 Existing Noise Contours with Generalized Existing Land Use
Threatened and Endangered Species

The federal Endangered Species Act (ESA), as amended, requires a federal agency to ensure that any action authorized, funded, or carried out by such agency is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of their habitat. Cook’s lomatium (Lomatium cookii) is a federally endangered species known to occur on the east side of airport property as shown on the following figure entitled EXISTING ENVIRONMENTAL CONSIDERATIONS SUMMARY based on a vegetation survey conducted recently on Airport property. Cook’s lomatium is associated with vernal pool wetland habitat, although delineations of wetland boundaries were not included in the vegetation survey.

Existing areas of Cook’s lomatium could be impacted by both the initial and ultimate runway alignments. No other threatened or endangered (or candidate) species are expected to be impacted by the proposed airside development activities included as part of the Conceptual Development Plan (CDP). Cook’s lomatium was not identified in any of the proposed landside development areas as part of the CDP.

Consultation with U.S. Fish and Wildlife Service (USFWS) will be necessary for any development activities that may impact Cook’s lomatium or its critical habitat in order to include project elements, such as mitigation activities, that will avoid a jeopardy determination or an adverse modification of critical habitat determination. A biological assessment would be required to assess any potential impacts of development activities on the listed species and its critical habitat. The Department of State Lands (DSL), U.S. Army Corps of Engineers (USACE), USFWS, and U.S. Environmental Protection Agency (EPA) have proposed to establish regional guidelines and standards intended to improve conservation of vernal pool habitat complexes and associated plant and animal species in the Agate Desert area of Jackson County, Oregon. These guidelines will streamline regulatory requirements of Oregon’s Removal/Fill Law (Oregon Revised Statute [ORS] 196.795-990) and the federal Clean Water Act (CWA) and ESA to provide greater certainty for permit applicants whose actions impact these resources (DSL et al. 2007).

It is important to note that Jackson County Airport Authority and various state and federal resource agencies have been in discussions regarding the disposition of Cook’s lomatium at Rogue Valley International-Medford Airport. These discussions include determining acceptable on-Airport relocation of Cook’s that would allow for the continued development of the Airport. (This discussion will be more formally described in the Draft Report of the Master Plan Update.)
Wetlands
Section 404 of the CWA establishes a requirement to obtain a permit from the USACE prior to initiating any activity that involves discharge of dredged or fill material into “waters of the United States,” including wetlands.

Wetlands are defined as those areas that are inundated or saturated by surface water or groundwater at a frequency and duration sufficient to support, and under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Jurisdictional wetlands must meet three wetland delineation criteria: hydrophytic vegetation, hydric soil types, and wetland hydrology. In addition, Oregon’s Removal/Fill Law requires anyone who plans to remove or fill material in waters of the state, including wetlands, to obtain a permit from the DSL. The Environmental Element of the City of Medford’s (the City’s) Comprehensive Plan (City 2003) provides goals, policies, and implementation strategies for improving and maintaining environmental quality in Medford while accommodating continued growth. The Statewide Planning Goals that oversee the protection and conservation of natural resources in Oregon are Goal 5: Open Spaces, Scenic and Historic Areas, and Natural Resources and Goal 6: Air, Water, and Land Resources Quality. Goal 5 contains provisions to protect wetlands.

Wetlands occurring on airport property as shown previously in Figure E6 are based on the City’s Local Wetlands Inventory (LWI 2002). LWI mapping is generally only used for planning purposes and is not adequate for regulatory purposes due to the limitations of the inventory methods and small map scale and because wetlands less than 0.5 acre in size are generally not mapped. The LWI identifies locally significant wetlands that are identified based on criteria defined in the DSL adopted rules (OAR 141-086-300 to 350). A protection program has been developed by the City to further guide the management of these wetlands as part of their compliance with Statewide Planning Goal 5.

Wetlands, including locally significant wetlands, could be impacted by both the initial and ultimate runway alignments on the east side of the airport property. In addition, locally significant wetlands are located in an isolated area on the northwest side of the airport and on the south side of the airport property. The proposed west-, east-, and south-side use areas could potentially impact wetlands if the proposed landside development areas include activities that would fill and/or functionally alter any of the existing wetlands.

DSL has established mitigation ratios and the USACE negotiates appropriate levels of mitigation based on wetland functions and values. If any development plans are implemented that impact wetlands as part of the CDP, coordination with the City, DSL, and USACE will be required to identify impacts and potential mitigation to offset impacts to wetlands. Additionally, any development activities
potentially impacting vernal pool wetlands could be addressed through the regional guidelines and standards currently proposed, as described above under the threatened and endangered species section.

Floodplains

Executive Order No. 11988 directs federal agencies to take action to reduce the risk of flood loss, minimize the impact of floods on human safety, health, and welfare, and restore and preserve the natural and beneficial values served by floodplains. Floodplains occurring on the east and south side of airport property along Upton and Lone Pine creeks as shown previously in Figure E6 are based on Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM; FEMA 2011). The data associated with the floodplain areas shown on Figure E6 have never been updated to reflect the relocation of Upton Creek east of the runway.

Zone A floodplain areas are high-risk areas defined as those areas with a 1 percent annual chance of flooding (for example, a 100-year flood). Zone B floodplain areas are moderate risk areas defined as the area between the limits of the 100-year and 500-year floods.

Zone A floodplains could be impacted by the ultimate runway alignment that crosses through Upton Creek. Proposed landside use areas on the west side and east side of airport property could impact Zone A floodplains. The west-side use area that contains Lone Pine creek would need to consider the Zone A floodplains associated with the creek if any development is proposed in this area. Likewise, the east-side use area that contains Upton Creek would also need to consider the Zone A floodplains associated with the creek if any development is proposed in this area. The proposed airport and on-airport perimeter road and security fence could also impact Zone A floodplains associated with Lone Pine Creek. Any increases in impervious surfaces that would generate additional stormwater runoff into either Lone Pine Creek or Upton Creek would also need to be evaluated in detail to determine if flooding capacities would be significantly impacted.

Water Quality

EPA has delegated water quality permitting responsibility to the Oregon State Department of Environmental Quality (DEQ). DEQ regulates activities that could negatively impact state water quality standards. In addition, the watersheds containing local rivers, streams, and creeks are an important asset to the City and its community and are managed carefully by the City and other stewardship groups. The City’s Comprehensive Plan contains policies to protect riparian areas and surface waters and the Bear Creek Watershed Council is actively working to restore the watershed’s streams and creeks and relies heavily upon community volunteers to implement restoration activities. As such, any development activities that could impact surface water quality and/or riparian areas will
need to be coordinated with DEQ and the City and would be beneficial to also coordinate with the Bear Creek Watershed Council. Water quality could be impacted by implementation of the CDP; however, most of those impacts are expected to be mitigated by using avoidance and minimization measures, including best management practices (BMPs), and updates to existing permits, as detailed in this subsection.

Impervious surface to the airport property will increase, which could consequently increase the volume of stormwater runoff. The portion of the airport property north and east of the terminal building is contained within the Upton Creek Drainage Basin and the property southwest of the terminal building is within the Lone Pine Creek Drainage Basin. Depending on where the development occurs, both of these basins could be impacted by increased stormwater runoff. Lone Pine Creek Drainage Basin has been listed by DEQ as water quality limited for temperature during the summer. A temperature Total Maximum Daily Load (TMDL) currently exists for the Bear Creek Watershed, which includes Lone Pine Creek.

The Airport has a Stormwater Pollution Control Plan (SWPCP) in place for compliance with the National Pollutant Discharge Elimination System (NPDES) Stormwater Discharge Permit, General Permit No. 1200-Z, Schedule A. The SWPCP details the existing and recommended facilities, monitoring practices, and procedures to reduce the contribution of pollutants from the Airport to surface waters, as well as potential treatment measures to be employed when pollutants encounter surface runoff. The SWPCP will likely need to be updated to address additional impervious surfaces and subsequent stormwater inputs as components of the CDP are implemented.

Development activities on the south and southwest side of the Airport, including the potential airport public access road, the on-airport perimeter road, and the security fence identified as part of the CDP will need to consider the location of Lone Pine Creek. The Oregon Department of Fish and Wildlife (ODFW) surveys streams located within the City boundary and documented the species of fish present and the locations where fish have been found. The ODFW has documented the presence of juvenile steelhead up to stream mile 1.8 and potentially up to Springbrook Road. Previously, steelhead had been documented up to Highway 62 at approximately stream mile 1.4. Based on a review of stream gradient, ODFW believes that historic fish distribution extended to about stream mile 4.0 near Foothill Road.

Lone Pine Creek is also proposed to be added to the City’s Riparian Corridors map for protection as part of Statewide Planning Goal 5 and the City’s Comprehensive Plan. Development activities are restricted within areas identified as riparian corridors, which are defined as 50 feet measured horizontally from the top-of-bank on either side of a waterway. Permitted activities within riparian
corridors include but are not limited to perimeter mowing and other cutting necessary for hazard prevention and potentially placement of new fencing.

Conditional uses within riparian corridors include:

- Water-related or water dependent uses, utilities or other public improvements
- Streets, roads, or bridges where necessary for access or crossings
- Multi-use paths, access ways, trails, picnic areas, or interpretive and educational displays and overlooks, including benches and outdoor furniture

Prohibited activities within riparian corridors include:

- Placement of new structures or impervious surfaces
- Excavation, grading, fill, stream alteration or diversion, or removal of vegetation except for perimeter mowing for fire protection purposes
- Expansion areas of pre-existing non-native ornamental landscaping such as lawns and gardens; dumping, piling, or disposal of refuse, yard debris, or other material
- Wireless communication facilities

A request to conduct a non-permitted activity within the riparian corridor must be submitted to the City Planning Director or designee for consideration. A deviation request may be approved as long as equal or better protection of the riparian area will be ensured through a plan for restoration, enhancement, or similar means. This type of plan will also require a habitat mitigation recommendation pursuant to OAR 635-415 “Fish and Wildlife Habitat Mitigation Policy” from the ODFW.

It should be recognized that Jackson County Airport Authority has been coordinating with the City of Medford Planning Department in the preparation the City’s riparian corridor plan and how the plan will apply to the portion of Lone Pine Creek that crosses the Airport. Language within the plan recognizes that the creek crosses the airport just to the south of Runway 14/32 and that the Airport Authority will be allowed to maintain the riparian area surrounding Lone Pine Creek, and the Creek itself, in a manner that is constant FAA regulations governing on-airport land uses within a Runway Protection Zone (RPZ).

Additionally, as mentioned previously, the Bear Creek Watershed Council is actively working to restore the watershed’s streams and creeks. Due to the temperature issues within Lone Pine Creek and the presence of steelhead, the watershed council is interested in restoring riparian and streambed conditions to improve shade function and ultimately reduce summer time temperatures within the creek channel. If development activities as part of the CDP occur in the vicinity of the creek or its
riparian areas, coordination with the Bear Creek Watershed Council would be beneficial for designing projects to avoid creek impacts to the extent practicable and/or develop mitigation actions to offset unavoidable impacts.

Upton Creek runs along the east side of the Airport property. No fish use has been documented by the ODFW in Upton Creek as of December 7, 2010. The ultimate runway alignment will require consideration of re-routing Upton Creek towards the northern end of the proposed runway. This could be a significant impact to the creek; however, for previous upgrades to the existing runway, the creek was successfully rerouted to avoid the runway. In addition, the creek travels through a potential development area on the east side of the existing and proposed runways, which would need to be considered if development is proposed in that area. Upton Creek is not considered a riparian corridor by the City (2011).

Farmlands

The Farmland Protection Policy Act (FPPA) is intended to minimize the impacts that federal programs have on the unnecessary and irreversible conversion of farmland to non-agricultural uses. Statewide Planning Goal 3 defines agricultural lands and requires counties to inventory such lands and to preserve and maintain them through exclusive farm use (EFU) zoning per ORS Chapter 215.

Identified soil types on the Airport property as shown previously on Figure E6 are based on the National Resources Conservation Service (NRCS) soil survey maps for Jackson County, Oregon. The majority of airport property is composed of Agate-Winlo Complex (0 to 5 percent slopes), Coker Clay (0 to 3 percent slopes), and Cove Clay (0 to 3 percent slopes). All three of these soil types are considered farmland of statewide importance (NRCS 2011). The initial and ultimate runway alignments could impact Agate-Winlo Complex (0 to 5 percent slopes) soil and Coker Clay (0 to 3 percent) slopes soil.

Farmland of statewide importance could also be impacted by proposed use areas on the west, east, and south sides, including the potential airport public access road, on-airport perimeter road, and security fence. Agate-Winlo complex (0 to 5 percent slopes) Coker clay (0 to 3 percent slopes), and Cove clay (0 to 3 percent slopes) soils all could be impacted by the potential landslide development. The east-side use area could impact Padigan Clay (0 to 3 percent slopes) soils and Phoenix Clay (0 to 3 percent slopes) soils. Both of these soils are also considered farmland soils of statewide importance (NRCS 2011). Provig-Agate complex (5 to 15 percent slopes) soil is also farmland of statewide importance and could be impacted by the south-side use area.
Areas identified for both airside and landside development on the CDP occur within areas zoned for airport, industrial, or commercial uses and are all located within the current City urban growth boundary (UGB). Therefore, the impacts of converting farmlands to urban land uses have been anticipated and planned for by local governments. The CDP is consistent with local zoning ordinances and land use requirements. The FPPA requires consultation with NRCS and the submittal of a farmland conversion form prior to implementation of a development project that would impact farmland of statewide importance.

Historical, Architectural, Archaeological, and Cultural Resources

No impacts to historical properties are expected to occur as a result of the CDP because the closest property is located over a mile from the Airport. A comprehensive cultural resources survey has not been completed for the Airport Master Plan Update, because that kind of survey is not typically conducted for airport master planning efforts. A query of the Native American Consultation Database (NACD) maintained by the National Park Service, however, indicates that the Klamath Tribes of Oregon have historical ties and interests within Jackson County. As such, appropriate cultural resource and Section 106 studies may be necessary after the Master Plan Update is approved for specific development activities that disturb native soil.

DOT Section 4(f) Property

Section 4(f) of the Department of Transportation Act addresses use of publicly owned land from a park, recreation area, or wildlife and waterfowl refuge of national, state, or local significance or land of an historic site of national, state, or local significance. The intent of Section 4(f) is to protect these public lands from impacts associated with transportation projects.

No affected resources have been identified within the Airport property boundary. As such, no impacts to Section 4(f) properties are expected to occur as a result of the CDP, because the closest facility, Don Jones Memorial Park, is 0.25 mile west of airport property.

Air Quality

Air quality regulations contained in the Federal Clean Air Act Amendment of 1990 are administered by DEQ and EPA. EPA has delegated authority to DEQ to implement federal air quality standards for hazardous air pollutants and new sources.

The Airport is located within an area that is currently designated as an attainment area for all National Ambient Air Quality Standards (NAAQS). However, the Medford UGB and the Medford-Ashland Air Quality Maintenance Area (AQMA) are designated as attainment/maintenance areas for carbon monoxide (CO) and particulate matter (PM10), respectively. An attainment/maintenance area previously was designated non-attainment, but achieved the standard through compliance with a
State Implementation Plan (SIP). There are two SIPs in place that include the Medford area: SIP for PM10 in the AQMA and SIP for CO in the Medford UGB. The Federal Clean Air Act Amendment of 1990 requires federal agencies to ensure that their actions conform to SIPs. As such, emissions from operations and construction identified in the CDP may need to be reviewed for compliance with these SIPs, as necessary and appropriate.

Hazardous Materials Pollution Prevention, and Solid Waste

The handling and disposal of hazardous materials, chemicals, substances, and wastes are primarily governed by four laws:

2. The Pollution Prevention Act of 1990

3. The Toxic Substances Control Act of 1976, as amended (TSCA)

The amount of hazardous materials stored, handled, or consumed on-site could increase; however, these impacts are expected to be consistent with current operations and the activities identified in the CDP are not expected to alter how the Airport currently handles and disposes of hazardous materials, chemicals, substances, and wastes. As such, no significant impacts are expected.
<table>
<thead>
<tr>
<th>Potential Airside Development</th>
<th>Potential Landside Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Runway 14L/32R and Taxiways (Phase I)</td>
<td>Westside Use Areas</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ultimate Runway 14L/32R and Taxiways (Phase II)</td>
<td>Eastside Use Areas</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Southside Use Area</td>
<td>On-airport Perimeter Road and Security Fencing</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Notes:
(a) Farmland Soils of Statewide Significance: 68, 33A, 35A, 139A, 141A, 151C
Conceptual Development Plan Summary

The screening of critical criteria including: Approach Analysis, Engineering and Environmental factors have identified likely development considerations resulting from the implementation of the Conceptual Development Plan (CDP) of the Rogue Valley International-Medford Airport Master Plan Update. These considerations will have input to future efforts such as capital funding considerations, National Environmental Policy Act (NEPA) environmental documentation efforts, and operational and strategic efforts.

The CDP sets the basis for the completion of the master planning program. Springing from the CDP are the Airport Layout Plan Drawing Set (Master Plan Chapter F), the Development Program (Chapter G), and final project documentation.